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LIQUID CRYSTALS, 1989, VOL. 5, NO. 6 ,  1789-1812 

Influence of flexoelectricity on electrohydrodynamic instabilities 
in nematics 

by N. V. MADHUSUDANA and V. A. RAGHUNATHAN 
Raman Research Institute, Bangalore 560080, India 

We have incorporated the flexoelectric terms in developing one-dimensional 
models of E.H.D. instabilities in nematics both under D.C. and A.C. excitations. 
It is shown that, using this model, we can account for the following experimental 
observations, which could not be adequately explained by earlier models: (i) The 
observation of oblique rolls whose wave vector q makes an angle CI with the 
undistorted director no, up to some frequency v o  in the conduction regime; (ii) the 
oblique rolls found in the dielectric regime; and (iii) the ‘longitudinal’ E.H.D. 
instabilities in some systems with negative conductivity anisotropy. We also 
present some experimental observations under D.C. excitation. 

1. Introduction 
The electrohydrodynamic instabilities exhibited by nematics with negative or 

weakly positive dielectric anisotropy and positive conductivity anisotropy are well 
understood in terms of the Helfrich [I] and Orsay [2, 31 models. However, there are 
some aspects of these instabilities that cannot be understood using these models: 

(i) the observation of oblique rolls whose wave vector q makes an angle with the 
undistorted director no, up to a frequency vo in the conduction regime [4]; 

(ii) the chevron pattern observed slightly above the threshold in the dielectric 
regime, in which the wave vector of the rolls makes an angle with no [5]; 

(iii) the E.H.D. instabilities observed in nematics with negative conductivity 
anisotropy [6, 71. 

We have recently shown [8-101 that the above observations can be accounted for 
by incorporating flexoelectricity [l 11 in the theory of E.H.D. instabilities. Flexo- 
electricity influences the problem in two ways. First, the action of the total electric 
field in the medium on the flexoelectric polarization [ 1 11 

P = e ,nV.  n + e,(V x n) x n (1) 

leads to an additional torque on the director. Secondly, P contributes to the space- 
charge density Q in the medium, given by 

V - D  = 4nQ, (2) 
where 

D = E ~ E  + A&(n - E)n + 4nP ( 3 )  

is the displacement vector. In this paper we present the detailed results of a one- 
dimensional linear analysis [8, 101 that takes into account the flexoelectric terms. The 
theoretical results are compared with experimental observations. 
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1790 N. V. Madhusudana and V. A. Raghunathan 

2. The electrohydrodynamic equations 
Consider a homogeneously aligned nematic layer lying in the (X, Y )  plane with 

the director no along the X axis. Under the action of an electric field E, applied along 
2, we assume that the E.H.D. instability gives rise to oblique rolls whose wave vector 
q lies along t, making an angle a with no (figure 1). In the deformed state n makes 
polar angles 8 and 4 in the (X, Y,  Z )  system, so that the components of n in the 
(t, y ~ ,  2)  system are [cos 0 cos (a  - +), -cos 8 sin ( c t  - b), sin 01. Since the 
boundary conditions are neglected, only the 2 component of the velocity v appears 
in the equations. The transverse field created in the medium due to the space charges 
has, by symmetry, only a 5 component Et. Further, o,, 8, 4 and E,: are assumed to 
be functions of 4 alone. 

The system is described by the following equations. 

(i) The Poisson equation: V - D = 4nQ. Substituting for D from (3), we get 

a 4  ao a2 4 
at Jt at2 4nQ = E, ~ + AE Eoc - + 4n(el + e,)sc -, 

where E, = E~ + h c 2 ,  s = sin a and c = cos a. 

z L 

(4) 

L 

Figure 1. Coordinate system and definitions of angles used in the text. 
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Instabilities in nematics 1791 

(ii) The charge conservation equation: @/at + V - J = 0, where J = aL E + 
Aa(n E)n. From these, we get 

where a( = oL + Aoc2. 
(iii) The equation of motion, following the notation of [Z], is given by 

av 
at e - + d i v ( p v )  - div(a + a’) = Q E ,  

where e is the density, a the elastic stress tensor and a’ the viscous stress 
tensor. The inertial term in the above equation is negligible as long as the 
frequency of the applied field is not too large [2]. Further, a does not lead to 
any linear terms in 8 and 4. Neglecting the inertial and non-linear terms in 
the above equation and substituting for a’, the following equation is obtained: 

where 

where a; are the Leslie viscosity coefficients. 

(iv) The torque-balance equation: 

1 I , i = Y,  2. 
Substituting for these terms, the following equations are obtained for the 
torque balance along Y and 2 respectively: 

relastic + r y l e c  + rlflexo - - rhydrodyn 

8% a2e AE AE a4 
at at 4n 471 a< y l d  + uzc - - M T  - - Ei8  - - EocE, - (el - e,)E,s - = 0, 

ae a 2 4  y,d + (el - e3)sEo - L + (el + e,)sc 3 = 0,  (8) at at 
where 4 = a$/&, M = K2s2 + K3c2, L = K,s2 + K3c2, and K l ,  K2 and K3 
are the splay, twist and bend elastic constants respectively. 

3. D.C. excitation 
In the case of D.C. excitation the time dependence in the above equations can be 

neglected since we confine our attention to stationary solutions. Eliminating v,, Et 
and Q from the above relations, we get the following two equations in 8 and 4: 
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1792 N. V. Madhusudana and V. A. Raghunathan 

Material parameters of MBBA. 

CI, = 6 . 5 ~ 9  
82 = -77.5cP 

K ,  = 6.1 x lO-'dyn cl, = 1.0 x 10- 'Oohm-'cm-'  
K2 = 4.0 x lO-'dyn 

A 0  _ -  K3 = 1.3 x lO-'dyn CLJ = -1.2cP - 0.5 
01 

El, = 4.7 
E~ = 5.2 

- 
a4 = 83.2cP el - e3 = 1.2 x c.g.s.units 
a5 = 46.3cP el + e3 = -7.0 x 10-4c.g.s.units 

where cR = A&/&,. and oR = Aa/o,. The above equations clearly admit solutions of the 
form 0 = 0, sin q< and 4 = 6, cos qt .  Substituting these solutions into (9) and (lo), 
the following relation between E, and q is obtained: 

where 

If we now assume, as in the Helfrich model [I], that q = n/d, where d is the sample 
thickness, then (1 1) gives a voltage threshold 

For a given set of values of the material parameters the threshold voltage v,, can 
be calculated for different values of the angle a. The lowest value of v,, gives the 
critical voltage V,  for the onset of the instability, and the corresponding value of a 
gives the tilt of the rolls at the threshold. The variation of ch with a, calculated for 
the standard values of the material parameters of MBBA (listed in the table), is shown 
in figure 2. For this case the instability sets in at a critical voltage of 1.715V with 
a = 0.83rad. 

From (9) we find that in the absence of the 4 distortion a = 0. In other words, 
the 4 distortion is essential for the production of oblique rolls. In the absence of the 
4 distortion the system cannot differentiate between domains with + a  and those with 
- a, and for physical reasons chooses a = 0. However, when there is a non-zero 4, 
the relative signs of 0, and c$o depend on the sign of a for any given sign of E. 

If the flexoelectric terms are neglected, it follows from (9) and (10) that there 
cannot be a 4 distortion of the director field, and hence a = 0. Thus in the context 
of a one-dimensional model the flexoelectric terms are entirely responsible for the 
oblique rolls. In order to clearly understand the influence of these terms, let us simplify 
the problem by taking As = 0 and Kl = K2 = K3 = K .  Then (9) and (10) reduce to 

(13) 
d t2  d5 oc 

(el - e3) + - (el + e3)c2 Ejc20 = 0. (14) 

d Z  4 (el + e3)Ao E,sc2 - d0 = 0, 
d5 

a2 d4 a2 s A o  
? I  

K - - (e, - e3)E,,s - + 
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Instabilities in nematics 1793 

I I I I 1 1 1 

* . .  

I I 1 I 1 I I 
0.20 0.60 1 .oo 1.40 

oll rad 

Figure 2.  Variation of D.C. threshold voltage F,, with c( calculated for the standard values of 
the MBBA parameters listed in the table. 

Note that only the combinations e, - e3 and el + e3 of the flexoelectric coefficients 
appear in these equations. The el - e3 terms in the two equations give the torque 
arising from the action of the external electric field on the curvature of the director 
field. The el + e3 term in (13) is the torque due to the gradient of the transverse 
electric field, and the el + e3 term in (14) is the hydrodynamic torque due to the action 
of the external field on the space-charge density arising from the flexoelectric polar- 
ization. If el - e3 and el + e3 have opposite signs then the two flexoelectric terms in 
(13) assist each other and favour a 4 distortion. Let us choose el - e3 and el + e3 
to be positive and negative respectively, as is found experimentally in MBBA. Taking 
e0, E, and a to be positive, we find from (13) that $o is negative. Since a2 is generally 
negative, both of the flexoelectric terms in (14) have the same sign. Further, the 
flexoelectric torques will be destabilizing if q50 is negative: a t  the threshold of the 
instability a 4 distortion of the director and hence a non-zero value of a are favoured. 
Similar arguments apply when the signs of both 8, and &, are reversed. 

The dependence of a on el - e3 is shown in figure 3. As el - e3 is decreased from 
its initial positive value, the flexoelectric torques decrease and a decreases. As a 
becomes smaller, the hydrodynamic torque becomes more dominant and the decrease 
in a becomes very rapid. When el - e, is negative and approximately equal to 
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I I I 1 I I I I I 

.................... 

I I I I I I I I I 
-8.00 - 4.00 0.00 4.00 8.00 

(el -- e3) x 104/c.g.s. units 

Figure 3. Variation of CI with e ,  - e3 calculated for A& = 0 and K3 = K2 = K , .  Note that 
CI = 0 for a very small range of negative values of el  - e 3 ,  and below this range the 
longitudinal flexoelectric domains are obtained. 

(Ao/o,,) (el + e3)  the net effect of the flexoelectric terms in (1  3) becomes negligible and 
a goes to zero. As el - e3 is decreased further, the threshold for the static flexoelectric 
domains [I21 becomes smaller than that for the EHD instability when 

( a4 - + 2a2EK a5 - a2 ")" q lei - e3l > 

and a = in. Thus for a small range of values of el - e3 (see figure 3) the flexoelectric 
terms do not influence the problem, and a = 0. The variation of a with e,  + e3 is 
shown in figure 4. As el + e3 is increased from its initial negative value, the flexo- 
electric torques decrease, and hence CI decreases. When el + e3 is positive and in the 
range 

(13) and (14) cannot be satisfied by non-zero values of 4. As can be seen from 
figure 4, actually a = 0 over a wider range because of the dominance of the hydro- 
dynamic torque at small values of a. 
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Instabilities in nematics 1795 

(el + e3) x 104/c.g.s. units 

Figure 4. Variation of a with e ,  + e, calculated for A& = 0 and K3 = K2 = K, .  Note that 
CI = 0 for a small range of positive values of el + e3 .  

If we now introduce the elastic anisotropy, (9) and (10) show that, since K2 and 
Kl are less than K3 in MBBA, the elastic anisotropy favours a non-zero value of a. This 
is reflected in figures 5 and 6 ,  which show the variations of a with el - e3 and e, + e3 
respectively, for K ,  # K2 # K3 and A& = 0. 

The variations of V,  and a with A& are shown in figures 7 and 8 respectively. As 
A& is increased, the stabilizing torque on the director decreases and V,  decreases. It 
should be noted that, beyond a certain positive value of A&, the Freedericksz tran- 
sition has a lower threshold than the E.H.D. instability. When As is negative the 
space-charge density due to the dielectric polarization has the same sign as that due 
to the conductivity anisotropy. Therefore, on increasing a from its initial negative 
value, the total space-charge density and hence the hydrodynamic torque decrease 
(see (10)). The latter equation can, however, be satisfied by an increase in the value 
of a due to the flexoelectric terms (figure 8). 

It is interesting to note that if both the flexoelectric coefficients are decreased by 
a factor S, fixing the ratio of (el - e3)/(el  + e3)  at the MBBA value, then a non-zero 
value of a is obtained only if S > 0.13 (figure 9). 

Figures 10 and 11 show V,  and a as functions of Ao/a, . When the latter has a small 
value, the Carr-Helfrich mechanism is not very efficient and the flexoelectric terms 
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U 

U 
E . 

-8.00 - 4.00 0.00 4.00 8.00 

(el --- e3) x 104/c.g.s. units 

Figure 5. Variation of a with e,  - e, calculated for A& = 0 and including the elastic 
anisotropy. Note that c( does not go to zero in this case. 

dominate, and hence CI and V,  are large. As Aolo, is increased, the Carr-Helfrich 
mechanism becomes more efficient and both V ,  and CI decrease initially. With further 
increase in Aolo, , V,  continues to decrease while CI gradually increases. The increase 
in Aalo, increases the transverse electric field gradient (see ( 5 ) )  and hence the 
flexoelectric torque on the director as well as the value of CI. 

3.1. Experimental results 
Most of the D.C. studies on E.H.D. instabilities in nematics have been made on 

MBBA. This material is chemically unstable, and the D.C. instability exhibited by it 
is known to be influenced by charge injection at the electrodes [5]. Consequently 
the optical pattern observed at the onset of the instability is not the set of linear 
rolls expected from the Carr-Helfrich mechanism, but rather a complicated two- 
dimensional pattern [5,  131. We have studied a room-temperature nematic mixture 
containing two chemically stable compounds, namely CE- 1700 and PCH-302 from 
Roche Chemicals. The low-frequency principal dielectric constants and the principal 
conductivities were measured at 1592Hz using a Wayne Kerr (B64.2) bridge. The 
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-8.00 -4.00 0.00 4.00 8.00 

(el + e3)  x 104/c.g.s. units 

Figure 6 .  Variation of a with el + e3 calculated for As = 0 and including the elastic 
anisotropy. In this and some of the other figures the coarseness in the plot is due to a 
relatively low resolution on the monitor from which a hard copy was obtained. 

values obtained at room temperature are: ell = 3.3, el = 4.3 and ail/al = 1.1. As our 
main objective was to study the influence of flexoelectricity on the D.C. E.H.D. 
instability, we also measured the flexoelectric coefficients of this mixture. The 
experimental details are described elsewhere [14]. (el - e3) /K and (e ,  + e3) /K were 
found to be 100 and - 18Oc.g.s. units respectively. Note that these values are 
comparable to the MBBA values (see the table) and have the same signs. 

The sample thickness was typically about 20pm in most of the studies. Under 
D.C. excitation the E.H.D. instability sets in as a set of convective rolls (figure 12). 
Further, the instability was not observed when the thickness of the sample was less 
than about 5 ,urn. As is well known [2], the existence of a critical thickness below which 
the E.H.D. instability cannot be observed is characteristic of the Carr-Helfrich 
mechanism, where the space charges are formed owing to the anisotropy of the 
electrical conductivity in the presence of a bend distortion of the director field. As the 
thickness of the sample is decreased, the director relaxation time decreases, becoming 
smaller than the charge relaxation time when the thickness is less than a critical value. 
Hence the fluctuations in the director field do not last long enough for the formation 
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> 
1 
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1.63 

1.48 

I I I 1 I I I I I 
-1.30 -0.90 -0.50 -0.10 0.30 

A€ 

Figure 7. Variation of the critical voltage V,  with the dielectric anisotropy A&. 

of space charges. Further, as can be seen from (2) and (3), the flexoelectric polar- 
ization makes an additional contribution to the space-charge density. The above 
argument concerning a critical thickness remains valid for charges arising from both 
mechanisms. We conclude that these mechanisms are responsible for the D.C. 
instability in our nematic mixture, which is observed only above a critical thickness, 
and that the influence of charge injection is negligible. The instability was found to 
set in at a threshold voltage of about 8.5 V, with the wave vector of the convective rolls 
making an angle of about 20' with the direction of initial alignment of the director. 
Although the occurrence of these oblique rolls is clearly predicted by the theory 
presented above, a detailed comparison of the theoretical predictions with the experi- 
mental results is not possible since many of the material parameters of the mixture 
under study are unknown. 

We also found that the width of the optical domains is approximately twice 
the sample thickness. Dust-particle motion within these domains clearly shows that 
each optical domain consists of two convective rolls of opposite vorticity. This is 
also indicated by the observation that an edge dislocation in the optical pattern 
corresponds to the termination of just one optical domain (figure 12). 
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Figure 13 shows the dark fringes obtained when the sample, placed between 
crossed polarizers, is viewed through a tilting compensator. These dark bands corre- 
spond to regions where the phase difference introduced by the sample in the incident 
linearly polarized beam is offset by the compensator. These fringes show very clearly 
that the effective birefringence of the sample varies more sharply at the bright lines 
of figure 12 than in the region midway between two bright lines. When the field is 
increased beyond the threshold, this asymmetry in the variation of the effective 
birefringence in these two regions becomes more pronounced (figure 13  (b)).  These 
observations indicate that the director profile within the rolls is non-sinusoidal, with 
the curvature in the region of the bright lines being much stronger than that in the 
region midway between two bright lines. The increase in the asymmetry with field 
strength above the threshold shows that non-linear terms are responsible for the 
observed optical pattern. Further, when the field direction is reversed, the bright lines 
making up the optical pattern are found to shift by about half the optical-domain 
width. The polarity dependence of the optical pattern suggests that flexoelectricity 
may be responsible for the non-sinusoidal director profile, since it is the only bulk 
property of a nematic that couples linearly to an external electric field. Including the 
second-order terms and taking a = 0 for simplicity, the torque balance equation 
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-I 
0.30 4 

1 I I I I I 1 1 I 
0.10 0.30 0.50 0.70 0.90 

S 

Figure 9. Variation of a with the factor S by which the flexoelectric coefficients are decreased. 

along Y is given by 

where q = $(a, + a5 - a2).  The lone quadratic term in the above equation arises 
from the action of En on the flexoelectric contribution to the space-charge density. 
This equation was solved graphically by the phase-plane technique, using the MBBA 
values of the material parameters. The resulting non-sinusoidal 8 profile and the 
effective birefringence An are shown in figure 14. The variation of An is sharper in 
regions like B than in regions like A. The incident light is therefore brought to focus 
at two different planes by the two types of regions. When the microscope is focused 
on the set of bright lines due to regions like B, which is closer to the sample, the lines 
corresponding to regions like A become very diffuse and faint. The disposition of the 
convective rolls with respect to the bright lines shown in figure 14 agrees with the 
observed dust-particle motion. When the field is reversed, the director field in regions 
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3.50 

> 2 2.50 

1.50 

Figure 10. Variation of the critical voltage V,  with Acr/cr,. 

like A becomes more distorted than in regions like B, and the bright lines shift to A 
in agreement with the observations. 

We should note here that, as discussed by Hirata and Tako [15], an asymmetry in 
the optical pattern will also arise from a sinusoidal director profile in the convective 
rolls. This is caused by tilting of the rays due to the periodic variation of the effective 
extraordinary refractive index in the sample. However, this weaker asymmetry does 
not depend on the polarity of the applied field, since the director profile in the con- 
duction regime does not change with the sign of the field, and is also present with an 
applied A.C. field. 

Our experiments also indicate that the fluid particles move along helical 
trajectories within the rolls. A three-dimensional model developed by us [9] that takes 
into account the boundary conditions shows that the flexoelectric effect is entirely 
responsible for the helical flow. When the flexoelectric terms are neglected, this model 
is in agreement with that developed by Zimmermann and Kramer [16] using 
stress-free boundary conditions. More recently the latter authors have also reported 
calculations taking flexoelectric terms into account [ 171. 
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Figure 11. Variation of a with Aala, . 

4. A.C. excitation 
Eliminating v, and Ec from (4)-(8) and assuming the solutions 

$ = $(O exp (43, 
4 = 4(0 exp (iqt), 

Q = QO> exp (43 
where $ = ae/at ,  the following equations are obtained describing the response of the 
system to an external electric field: 
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Instabilities in nematics 1803 

Figure 12. Photograph of the E.H.D. pattern observed slightly above the threshold of the 
D.C. instability in a room-temperature nematic. The orientation of the undistorted 
director no is indicated in the figure. Note that the edge dislocation in the pattern 
corresponds to the addition of one optical domain, which has two convective rolls of 
opposite vorticity as explained in the text. The sample thickness was about 15pm. 
( x  300) 

where 

- 1 = [,+ 
T4 

4n(e, + e,)cs 

e c  
e, = 9 

Ae ce, 
eJ, = (el - e3)s - - 

4n ’ 

eZ = (el + e,)csq2. 
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(b) 

Figure 13. (a) Dark fringes obtained when the sample was viewed in sodium light through a 
tilting compensator. The applied voltage was close to the threshold value. (6)  As in (a), 
but at a slightly higher voltage. 

For the sake of simplicity, following Smith et al. [3], we solve the problem for the 
case of square-wave excitation. The applied field is now given by 

+E, (0 < t < (2v)-l), { -E, ( (2v) -1  < t < v - I ) ,  
Ed4 = 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Instabilities in nematics 1805 

Figure 14. Top: non-sinusoidal director profile obtained from (1 5). Centre: resulting variation 
of the effective birefringence An with X (for n, = 1.769, no = 1.549). Bottom: the 
disposition of the convective rolls agrees with the observed dust-particle motion, the 
regions B corresponding to the bright lines of figure 12. 

v being the frequency of the applied A.C. field. Taking solutions of the form 

$( t )  = c, exp (W), 
440 = C, exp (W), 
Q<t> = CQ exp (At/z>, 

for one half-period of the applied field, the following characteristic equation is 
obtained: 
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The general solutions are of the form 
3 

$ ( t )  = j = l  1 ajexp(:), 

3 

4(t)  = 1 bj exp (y), 
j = 1  

3 

Q(t> = 1 cjexp ($), 
j = l  

where aj are arbitrary constants, Aj are the eigenvalues of (19), and 

It is clear from (16)-(18) that when Eo changes sign after every half period, either 
4 and Q change sign or $ changes sign. Thus there are two sets of solutions possible, 
corresponding to different physical situations, as in the Orsay model [2, 31: 

(a) the conduction regime: here Q and (p oscillate with the field but $ does not, i.e. 

(20) 'i Q(t  + 1/2v) = -Q<t>, 

4(t + 1/2v) = -4(& 
$0 + 1/2v) = $(O; 

(b) the dielectric regime: here $ oscillates with the field but Q and 4 do not, i.e. 

In order to find the threshold of instability, a set of eigenvalues ,I1, A, and d3 of 
(19) must be found that satisfy either (20) or (21). The problem was solved numerically. 
For a given set of values of the material parameters and a given frequency, we choose 
some values of ct and the voltage V and obtain the eigenvalues of (19). The voltage 
V is then varied till the As satisfy one of the two conditions corresponding to the two 
regimes of instability. This value of V is the threshold voltage I(,, for the particular 
value of a chosen. The calculations are repeated for different values of ct. The 
minimum value of K,, gives the critical voltage V ,  for the onset of instability, and the 
corresponding value of a is the angle between q and no at the onset of instability. The 
calculations are then repeated for different values of the frequency of the applied field. 

The variation of the critical voltage V ,  and the corresponding value of a with 
frequency are shown in figure 15 for the MBBA parameters (see the table) with 
o,, = 3 x lo-'' ohm-' cm-'. Curves (a) and (c) correspond respectively to the 
conduction and dielectric regimes. Curve ( b )  is the re-stabilization branch, above 
which the conduction regime cannot exist. The dashed lines in the stability diagram 
indicate regions with a non-zero value of a. We see from the figure that oblique 
rolls are obtained up to a critical frequency vo in the conduction regime, as found 
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Figure 15. Upper section: Threshold voltage (curve (a)) and restabilization voltage (curve 
(b)) as functions of the frequency in the conduction regime for MBBA with o,, = 
3 x lo-'' ohm-' cm-'. The low-frequency portions indicated by dashed lines are 
characterized by non-zero values of CI. The frequency dependence of the voltage at 
threshold for a 20 pm thick sample in the dielectric regime is shown by curve (c). Lower 
section: Variations of tilt angle CI of the oblique rolls with frequency. (a), (b) and (c) 
correspond to the respective branches in the upper section. 

experimentally by Ribotta et al. [4]. Further, the ratio vo /vc ,  where v, is the cut-off 
frequency of the conduction regime, is comparable to the experimental value [4]. 

Oblique rolls are also obtained along the restabilization branch up to a frequency 
vr ,  with vo < v, < v,. Therefore, for frequencies in the range vo < v < vr,  although 
normal rolls are obtained at the threshold, we can expect oblique rolls as the field 
strength is raised. This is again in agreement with the observations of Ribotta et al. 
[4]. A non-linear analysis is needed to calculate the voltage at which this transition 
takes place. 

In the dielectric regime a non-zero value of a is obtained at the threshold for all 
frequencies (see figure 15, curve (c)). Experimental observations in this regime are 
available only on MBBA [5]. In this case a set of normal rolls is seen at the threshold. 
We note here that if the flexoelectric coefficients are decreased by a factor S,  keeping 
the ratio (el  - e3) / (e l  + e 3 )  fixed, then a non-zero value of a is obtained only if 
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Figure 16. Variation of c( with the factor S by which the flexoelectric coefficients are decreased, 
at 100 Hz in the dielectric regime. 

S > 0.74 (figure 16). It is possible that the experimental values of the flexoelectric 
coefficients of MBBA listed in the table may have been overestimated. We should 
note, however, that, with a very slight increase in the field above the threshold, the 
chevron pattern consisting of oblique rolls is observed in MBBA [5].  In view of our 
earlier discussion concerning the occurrence of oblique rolls above the threshold in the 
frequency range vo < v < v, in the conduction regime, we believe that flexoelectricity 
is again responsible for the oblique rolls found in the chevron pattern. 

The relaxation time of the 4 distortion, T4, is independent of the applied field (see 
(1 7)) and typically of the order of a few hertz. However, because of the coupling to 
the other two variables, 4 is forced to oscillate with the applied field even at higher 
frequencies in the conduction regime. Figure 17 (a)  shows Ic/, Q and 4 as functions of 
time for one period of the applied field at a voltage just above the threshold and a t ,  
a frequency slightly less than vo in the conduction regime. The temporal behaviour of 
these three variables can be understood from (16)-(18). The 4 terms in (16) and (1 8) 
are found to be negligible, and hence the evolutions of both Ic/ and Q are similar to 
those discussed by Smith et al. [3]. We shall therefore confine our attention to the 
evolution of 4. Let the field be reversed at t = 0 when $, 4 and Q are positive and 
increasing. Of the two forcing terms in (17), only the one containing $ changes sign 
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0 1 /2v 1 l v  

t 

Figure 17. Variations of $, 4 and Q with time for one period of the applied square-wave 
electric field: (a) just above the threshold in the conduction regime at 40 Hz; (b) slightly 
below the restabilization curve at 100 Hz; (c) in the dielectric regime at 170 Hz. The values 
of the material parameters used in these calculations are the same as in figure 15. 

immediately, and 4 continues to increase since the Q term is stronger than the term. 
However, as soon as Q becomes negative, both forcing terms have the same sign 
and 4 decreases and changes sign. Thus Q and 4 oscillate with the applied field. 
Figure 17 (b) corresponds to a voltage slightly below the restabilization curve and at 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



1810 N. V. Madhusudana and V. A. Raghunathan 

I I I 1 I I I I I 
I t 

I 

I 1 I I I I I I I 
1 .oo 3.00 5.00 7.00 9.00 

u ,  x 10’O/ohm-’ crn ’ 
Figure 18. Variation of the ratios of frequencies vo/v, (curve (a))  and v,/v, (curve (b)) with o,, . 

a frequency slightly less than v,. Since T, is now comparable to z, the initial decrease 
in $ is very sharp. The evolution of 4 is as in the previous case. The larger value of 
E along the restabilization branch makes the $ term in (17) stronger, allowing g5 to 
oscillate at higher frequencies than at the threshold of the conduction regime. As a 
result, oblique rolls are obtained along the restabilization branch up to a frequency 
v, > vo. In the dielectric regime $ oscillates with the applied field, while Q and g5 do 
not (figure 17 (c)). In this regime a 4 distortion of the director field can occur if the 
values of the material parameters are suitably chosen, irrespective of the frequency. 

It is clear from the above discussion that 4 is driven and made to oscillate in the 
conduction regime mainly by the Q term in (17). By increasing the conductivity of the 
sample, the charge relaxation time decreases and 4 is forced to oscillate at  higher 
frequencies. Figure 18 shows the variations of v,,/v, (curve (a)) and v,/v, (curve (b))  
with nl, for fixed Ao/ol,. As seen from the figure, both of these ratios decrease as o,, is 
increased, with v,/v, decreasing more rapidly at  smaller values of o,, . 

In some materials that exhibit a smectic A (or C)-nematic transition the con- 
ductivity anisotropy ACT becomes negative as the temperature is lowered towards the 
transition point. Two regimes of E.H.D. instability are observed in these nematics 
with negative An, above and below some frequency v, [6, 71. Both of these regimes are 
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characterized by a field threshold. At the threshold of the low-frequency branch a set 
of convective rolls aligned approximately parallel to the undistorted director no 
('longitudinal' domains) are found. The width of these rolls is comparable to the 
sample thickness. In the high-frequency regime a set of linear rolls directed arbitrarily 
in the medium develops at the threshold. The width of these rolls is much less than 
the sample thickness. 

The Helfrich [l] and Orsay [2, 31 models require that the parameter 

where y = +(a4 + a5 - a,), should be greater than 1 for E.H.D. instabilities to 
develop. This criterion is not satisfied by the materials mentioned above. However, we 
find that when the flexoelectric terms are included, E.H.D. instabilities can be 
obtained even in such materials. In our calculations we have doubled the values of KI , 
K2, K,, el and e, ,  listed in the table, since the values of these parameters are known 
to be enhanced close to the smectic-nematic transition point. Further, near this 
temperature, it is also known that the viscosity coefficient a, changes sign [6, 181. We 
assume that a3 = 0.5P and Ao = - 3 x lo-' ' ohm-' cm-'. We note here that K ,  
and K3 of 40.8 are found to double within 2-3" of the N-S transition point [19, 201, 
and Ao changes sign at around the same temperature. The 'longitudinal' E.H.D. rolls 
are also obtained, without increasing the values of the elastic constants or the 
flexoelectric coefficients, by changing A& to -0.2. We do not find solutions corre- 
sponding to the conduction regime, but those corresponding to the dielectric regime 
do exist. The threshold field is found to be minimized for q = 0. Therefore we use the 
Helfrich criterion, q = n/d, at the threshold, d being the sample thickness. Thus the 
width of the rolls is comparable to the sample thickness, as found experimentally for 
the low-frequency regime in these materials. Since the solutions correspond to the 
dielectric regime, the instability is characterized by a field threshold. Further, at the 
threshold, a !z 1-34 rad and is practically independent of the frequency, i.e. the rolls 
are nearly 'longitudinal'. The frequency dependence of the threshold field is similar 
to that in the dielectric regime of materials with positive Ao (see figure 15). It is clear 
that in this case the space-charge formation is due entirely to the flexoelectric effect, 
which also accounts for the large value of a. The light-scattering experiments of 
Goscianski [6] indicate that the curvature of the director field oscillates in such rolls, 
confirming that the medium is in the dielectric regime. 

We do not find solutions corresponding to the high-frequency regime where 
q 9 n/d. Here it should be noted that at high frequencies the experimental value of 
Ao will have a positive contribution from the dielectric loss associated with the 
relaxation of q. As shown by Goossens [21], this contribution can cause E.H.D. 
instabilities at relatively high frequencies. Experimentally, even dynamic scattering 
has been seen at frequencies of about 50 kHz, at sufficiently high voltages, apparently 
owing to this contribution [22, 231. This also means that the instability at threshold 
is hydrodynamic in origin. 

In nematics with a negative Ao at low frequencies it is possible that the effective 
conductivity anisotropy at high frequencies is positive owing to the contribution from 
the dielectric loss of E, ,  . These materials can then be expected to show a high-frequency 
instability similar to the dielectric regime in nematics with positive Ao. This can account 
for the experimental observation that the high-frequency instability in these materials 
goes over smoothly to the 'standard' dielectric regime as the temperature is increased. 
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Thus the inclusion of flexoelectric terms in the one-dimensional model of E.H.D. 
instabilities in nematics leads to a reasonable explanation of several observations that 
were not adequately accounted for by earlier models. 

We are very grateful to Professor S. Chandrasekhar and Dr G. S .  Ranganath for 
many helpful comments. 
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